A mitochondria-targeting artemisinin derivative with sharply increased antitumor but depressed anti-yeast and anti-malaria activities

نویسندگان

  • Chen Sun
  • Yu Cao
  • Pan Zhu
  • Bing Zhou
چکیده

The potent anti-malarial drug artemisinins are additionally anti-tumorigenic and inhibitory to yeast growth. The action mechanism of artemisinins, however, is not well understood. Heme and mitochondrial membrane are both suggested to be involved in the action of artemisinins. Because heme is also synthesized in the mitochondrion, mitochondria appear to be a critical organelle for artemisinins' activities. In this study, we synthesized a mitochondria-targeting artemisinin derivative by conjugating triphenylphosphonium (TPP) to artelinic acid (ARTa). ARTa-TPP displays far more potent anti-tumorigenic activity than its parent compound. In contrast, ARTa-TPP is much less active against yeast respiration growth and malarial parasites. Notably, ARTa-TPP is also associated with increased toxicity to other kinds of control mammalian cells. These results suggest divergent action modes for artemisinins against cancer cells and malaria or yeast cells. We conclude that mitochondrial targeting could substantially elevate the anticancer potency of artemisinins, but the accompanied increased toxicity to normal cells raises an alert. The mechanism regarding the opposing effects of TPP conjugation to ARTa on its anticancer and anti-malarial/anti-yeast potencies is discussed based on our current understandings of artemisinins' action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The molecular and cellular action properties of artemisinins: what has yeast told us?

Artemisinin (ART) or Qinghaosu is a natural compound possessing superior anti-malarial activity. Although intensive studies have been done in the medicinal chemistry field to understand the structure-effect relationship, the biological actions of artemisinin are poorly understood and controversial. Due to the current lack of a genetic amiable model to address this question, and an accidental fi...

متن کامل

Terpenoid Compounds and Anti- Hemozoin and Anti- Ciliates Protozians Effects of Artemisia annua L. and Chenopodium botrys L.

Background: β-Hematin (Hemozoin) was synthised inside human erythrocyte by malaria parasite. The parasite avoids the toxic effects by polymerizing heme molecules into insoluble crystalline β-Hematin. C. botrys and A. annua used for the treatment of diseases like malaria, hepatitis, cancers, and inflammations. Objective: Determine of antimalarial and anti-protozoa effects of A. anuuae and C. bo...

متن کامل

Artemisinin Directly Targets Malarial Mitochondria through Its Specific Mitochondrial Activation

The biological mode of action of artemisinin, a potent antimalarial, has long been controversial. Previously we established a yeast model addressing its mechanism of action and found mitochondria the key in executing artemisinin's action. Here we present data showing that artemisinin directly acts on mitochondria and it inhibits malaria in a similar way as yeast. Specifically, artemisinin and i...

متن کامل

Profiling of the anti-malarial drug candidate SC83288 against artemisinins in Plasmodium falciparum

BACKGROUND The increased resistance of the human malaria parasite Plasmodium falciparum to currently employed drugs creates an urgent call for novel anti-malarial drugs. Particularly, efforts should be devoted to developing fast-acting anti-malarial compounds in case clinical resistance increases to the first-line artemisinin-based combination therapy. SC83288, an amicarbalide derivative, is a ...

متن کامل

Anti-Plasmodial Polyvalent Interactions in Artemisia annua L. Aqueous Extract – Possible Synergistic and Resistance Mechanisms

Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L(-1)), dihydroartemisinic ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017